
Correspondence Matrices; Algorithms for

Propositional Logic.

Brian Droncheff

Email: Brian@B-Theory.com

Abstract

This paper gives a new way to represent logical expressions as well
as a novel algorithm for the computation of logical expressions in propo-
sitional logic. The findings presented show that logical operators can be
represented as binary matrices called correspondence matrices (CM’s) and
furthermore that many logical expressions can be computed by operating
on their CM’s. The linearity of CM’s is proven and it is shown that CM’s
can be used as measurement operators in a similar fashion as is done in
quantum computation. Representing logical operators as matrices allows
for the use of matrix transformations and it is found that the negation,
rotation and transformation of CM’s allow for the transformation of a
logical expression in to another. The notion of CM’s are generalized in
to logical measurement matrices (LM’s) which are used to measure rela-
tionships between logical expressions. Other operations between logical
expressions e.g. ‘quotienting’ and methods for the (de)composition of log-
ical expressions are discussed as well. In finishing it is shown how LM’s
and their unique CM’s can be constructed to compute finite length logical
expressions.

0.1 Keywords

Keywords:

Logic, Propositional Logic, Matrix Operators, Quantum Computation, Logical
Calculus, Matrix Mechanics, Circuit Design, Algorithms, Representation

Theory, Distributive Algorithms, Parallel Processing.

1

mailto:Brian@B-Theory.com

1 Introduction

This paper gives a new way in which to represent and combine propositional
logical expressions. Most notably, this paper shows that operators themselves
can be represented by binary correspondence matrices (CM’s) thus allowing log-
ical expressions to be transformed via matrix transformations, furthermore that
logical expressions can be combined based solely on their respective CM’s. This
new representation may reduce the time complexity of computation, not only
due to the ability in which CM’s can be combined but because CM’s are binary.
Direct manipulation of binary values my cut down on the computation and pos-
sible issues arising from having non-binary information representations. Also as
CM operators can be broken apart both less complex and smaller matrices they
give the ability for distributive computation and parallel processing.

To immediately see motivating examples: 1. Computation of a two variable
logical expression using a CM [3]; 2. Rotation, Transposition and negation of
CM’s for computation [3.1]; 3. Quotienting of one logical expression by an-
other [3.2.2]; 4. Combining logical expressions [3.2.3]; 5. Measurement by a LM
[4.1.4]; 6. Computation of a four variable logical expression using a CM [5.1.1];
7. Combining four variable logical expressions [5.4.2]. As correspondence ma-
trices and the more general logical matrices are structures introduced in this
paper, there is very little external material supporting them. Because of this,
nearly everything in this paper was developed specifically to justify the deriva-
tion and implementation of CM’s. Many other interesting faucents of these
matrices were discovered in development and are added for completeness.

The algorithm presented has been developed in such a fashion as to be used
in quantum computation. While quantum correlations have not be explicitly
introduced in this paper, there are several ideas developed which have a relation-
ship to postulates of quantum mechanics, mainly that in which the developed
correspondence matrices act as a type of measurement matrix. As these cor-
respondence matrices are linear and act similar to measurement matrices in
quantum mechanics, they offer a great stepping stone in understanding some of
the fundamental concepts in this area.

2 Fundamentals

2.1 Basic Logic

We will denote a logical variable or literal to be that which can be assigned
or given a value of true or false. The assignment of truth to one or more logical
variables is called a truth assignment. The value of being true is denoted by T
or 1 and that of being false by F or 0. We can operate on one or more logical
variables via a logical operator or binary operator in which the logical variables
will be one or two operands. A logical expression L is a correctly formatted
combination of one or more logical sub-expressions and operators, a logical

2

sub-expression itself being a logical expression comprised of one or more logical
variables and operators. Through the paper any single letter representing a
variable will denote both a logical variable or expression i.e. X may refer to
a single literal or, such as L a logical expression, the context will be evident
from the usage. A logical operator variable can be given the value of any logical
operator. We will denote logical operator variables by greek letters, usually Θ.

We follow propositional logic[1] let ¬ be the negation operator and define the
negation rules, ¬1 = 0, ¬0 = 1, ¬(L) = ¬L and ¬(¬L) = L. The negation of
a logical expression is called its compliment. A non-negated literal X is called
an atom. We will let the conjunction, denoted by the symbol ∧, be a binary
operator between two logical variables X and Y written X ∧Y or XY for short,
and the disjunction ∨ be a binary operator between X and Y written as X ∨Y .
The equations denoted throughout the paper will work for both single and finite
multi-variable logical expressions.

For reasons which will be explained later, the XOR operator will be denoted
symbolically by m instead of the more commonly used ⊕ symbol. We will start
with a few important relations:

X ∧ 0 = 0 X ∨ 0 = X X ∧ 1 = X X ∨ 1 = 1
X m 1 = ¬X X m 0 = X ¬X m 1 = X ¬X m 0 = ¬X

The difference in XOR notation can be seen in the following application of
DeMorgans law:

¬(X m Y) = X ⇔ Y ¬(X ⇔ Y) = X m Y

where ⇔ is the notation commonly used for the XNOR operator. We will call
the representation of a logical expression in which each of its sub-expressions
are XOR’ed with one-another the XOR decomposition. Each sub-expression of
the XOR decomposition is called a component of the XOR decomposed expres-
sion. Likewise the XOR composition or XOR sum is the composition of a logical
expression from components which are XOR’ed together. The XOR decompo-
sition is in algebraic normal form (ANF) whereas the XOR composition does
not have to be.

2.1.1 Valuations

A valuation V is the result of the assignment of truth values to a logical
expression or an operator to a logical operator variable. We will denote the val-
uation of the logical expression L as V(L) = V where V ∈ {T, F} and say that
an expression which is not valuated to be unevaluated. The positive valuation
V(L) = T and the negative valuation V(L) = F are denoted by VT (L) and
VF (L) respectively. Each VT (L) and VF (L) correspond to a set of truth as-
signments which make the expression L respectively true or false. We say that
the logical expression L has been assigned a truth value or equivalently has a
truth assignment V if L = V and denote this truth assignment as VV (L). We

3

will let a VT (L) be that of a positive assignment in which L = T and that of
negative assignment denoted by VF (L) in which L = F . A positive or negative
assignment of a logical expression L assigns true or false to every non-negated
variable (atom) or sub-expression respectively.

As indicated in the name, a logical operator variable Θ is itself a variable.
We can apply a valuation in which we have that V(Θ) is in the set of logical op-
erators e.g. V(Θ) = ∧. Like a logical expression which has not been assigned or
valuated to have a particular truth value, a logical operator variable doesn’t have
a particular value until assigned or valuated to be a fixed operator. The valua-
tion of a logical expression L = XΘY has the form V(L) = V(X)V(Θ)V(Y) or
for a particular assignment value V , VV (X)ΘVV (Y). We will overload (abuse)
notation for a logical variable operator Θ and call it a logical operator (as op-
posed to V(Θ)) when no confusion arises.

We can see from above V(L), that expressions have a particular valuation
depending on their truth assignments, but also that we may have truth as-
signments being dependent on the expressions valuation. As an example, in
one direction: VT (X ∧ Y) ⇒ (VT (X) ∧ VT (Y)) however it is also true that
(VT (X) ∧ VT (Y)) ⇒ VT (X ∧ Y). Combining the two expressions above and a
similar computation shows that:

VT (X ∧ Y)⇔ (VT (X) ∧ VT (Y)) and VT (X ∨ Y)⇔ (VT (X) ∨ VT (Y))

These equivalences are important in order to be able to distinguish between
directly assigning a value (assignment) to logical variables i.e. VT (X∨Y) giving
X = Y = T and a valuation i.e. VT (X ∨ Y) where only one of X or Y must
be true. In a valuation then it is possible that a particular variable may not be
forced to have an assignment so as to make the expression true.

Concerning negation we have: ¬VV (L) = ¬(V(L) = V) ⇔ (V(L) 6= V)
however (V(L) 6= V) ⇔ (V(L) = ¬V) as V is binary, so ¬VV (L) ⇔ V¬V (L).
We also find that ¬VV (L) ⇔ VV (¬L), hence V¬V (L) = VV (¬L) and we have
that:

¬VV (L)⇔ V¬V (L)⇔ VV (¬L)

With this equality we can re-write the negative valuation of a logical expression
by the positive valuation of that same expressions negation.

2.2 Bra-Kets and State Vectors

To start, let a logical state be a negated or non-negated, valuated or uneval-
uated logical expression e.g. 1, 0, X, and ¬X are all logical states. We will call a
logical statevector a matrix consisting of logical states. For example both [1, 0]
and [X,¬X] are logical statevectors.

The notion of a bra and ket[2],[3] are ways to represent logical statevectors.
Let Ψ be a statevector. We call bra Ψ the bra-vector for Ψ, denote it is as 〈Ψ|

4

and represent it by a 1 × n matrix of logical expressions. We call ket Ψ the
ket-vector for Ψ and denote it as |Ψ〉 the n× 1 logical matrix. The bra of Ψ is
related to ket of Ψ by 〈Ψ|T = |Ψ〉 and both are logical statevectors. The inner

product between 〈Ψ| and |Ψ〉 is denoted 〈Ψ|Ψ〉, the outer product[4] or tensor
product by |Ψ〉 ⊗ 〈Ψ| = |Ψ〉〈Ψ|, and for another statevector |Λ〉 we let |Ψ〉|Λ〉
= |Ψ〉 ⊗ |Λ〉.

Let ΨX be a two element statevector. We denote the respective bra and ket
vectors as such:

〈ΨX | =
[
X1, X2

]
and |ΨX〉 =

[
X1

X2

]
where X1 = X and X2 = ¬X. We define |Ψ¬X〉 = [X2, X1]T and have the
relationship to |ΨX〉 via negation:

¬|ΨX〉 = ¬[X1, X2] = [¬X1,¬X2] = [X2, X1] = |¬ΨX〉 = |Ψ¬X〉 = |ΨX〉2

In general we find that |ΨXi
〉 = [Xi,¬Xi]

T and ¬|ΨXi
〉 =|Ψ¬Xi

〉 = [¬Xi, Xi].
Because of the relationship to the subscript in the bra (and ket) statevector to
the state-vector itself i.e. X in |ΨX〉, we change the notation. The new notation
is better suited to propositional logic. In the rest of the paper when no confusion
arises we will make the following changes:

|ΨXi
〉 = |Xi〉

For example, |ΨX1
〉 = |X1〉 = |X〉 and |ΨX2

〉 = |X2〉 = |¬X〉.

Let [Θ] be the 4-element square matrix with elements Θij in which V(Θij) ∈
{0, 1}. We will call [Θ] an operator when it acts upon any other matrix. The
action of an operator is called an operation and the logical state vectors which
are operated on are called operands. Operations are as follows:

〈X|[Θ] =

[
XiΘi1

XiΘi2

]T
and [Θ]|Y 〉 =

[
Θ1kYk
Θ2kYk

]
where [Θ] =

[
Θ11 Θ12

Θ21 Θ22

]
where 〈X|[Θ]|Y 〉 = XiΘijYj which is the Einstein notation[5] for the XOR sum
mi,j XiΘijYj = XiΘijYj = X1Θ11Y1 m · · · m X2Θ22Y2. It doesn’t matter
whether we operate first on 〈X| or |Y 〉:

(〈X|[Θ])|Y 〉 = 〈X|([Θ]|Y 〉) = XiΘijYj

which is proved simply as we can distribute over XOR.

We can combine logical statevectors over the logical operator Φ in the fol-
lowing fashion:

|X〉 Φ |Y 〉 =

[
XΦY
¬XΦ¬Y

]
for example |X〉 m |¬X〉 = [1, 1]T and |X〉 m |X〉 = [0, 0]T .

5

3 Correspondence Matrices (CM’s)

Correspondence matrices (CM’s) are a new way to represent operators in
propositional logic. Not only do these representations give a new way to visual-
ize logical expressions, they allow for new types of logical operations. They offer
the ability to quotient logical expressions by one-another [3.2.2] as well as con-
straints on ways in which logical expressions can be (de)composed. Possibly the
most significant findings are that CM’s allow matrix operations to be applied
to logical expressions thus allowing the transformation [3.1] and computation of
logical expressions [3.2.3]. Furthermore, correspondence matrices are shown to
be linear and can be interpreted as measurement operators [4.1] operating on
logical expressions, thus giving a possible use in fields such as quantum compu-
tation.

The foundation for the development of CM’s is the fact that every proposi-
tional logical expression can be written as the XOR’ing of some set of logical
sub-expressions. In particular, consider the logical expression L = XΘY which
can be written as a conjunction of some XOR combination of one or more ele-
ments of the set {XY,X¬Y,¬XY,¬X¬Y }:

XΘY = Θ11XY m Θ12X¬Y m Θ21¬XY m Θ22¬X¬Y = ΘijXiYj

where V(Θij) ∈ {0, 1} and XiΘij = ΘijXi by the commutativity of ∧. For
each i, j combination ΘijXiYj is called a component. For example X ⇒ Y can
be re-written as the XOR combination of components: 1 ∧ XY m 0 ∧ X¬Y m
1 ∧ ¬XY m 1 ∧ ¬X¬Y where V(Θ11) = V(Θ21) = V(Θ22) = 1 and V(Θ12) = 0.

We can write the expansion of XΘY more succinctly as:

XΘY = 〈X|[Θ]|Y 〉 = XiΘijYj

in which each logical operator Θ can be uniquely represented as the matrix
[Θ]. This uniqueness can be seen by direct computation; that for two logical
operators Θ1 and Θ2 that Θ1 = Θ2 if and only if XiΘ1,ijYj = XiΘ2,ijYj . We can
build correspondence matrices from the ground up. Similar to the valuation of a
logical measurement matrix as seen in 4.1, we can valuate a logical state-vector
which in the single variable case we get;

|VT (X)〉 =

[
VT (X)
VT (¬X)

]
=

[
1
0

]
= |1〉 and |VF (X)〉 =

[
VF (X)
VF (¬X)

]
=

[
0
1

]
= |0〉

we will call |1〉 and |0〉 be the respective 1 and 0 ket-vectors. There are four
possible tensor product combination of 1 and 0 ket-vectors;

|1〉〈1| =

[
1 0
0 0

]
, |1〉〈0|=

[
0 1
0 0

]
, |0〉〈1|=

[
0 0
1 0

]
, |0〉〈0|=

[
0 0
0 1

]

6

which are the four CM basis matrices, each with a single feature or positive
entry. The set of basis matrices constitutes a basis in which we can create any
correspondence matrix. For example, we can derive the CM [∨] which is the
matrix operator of the of logical OR (∨);

|1〉〈1| m |1〉〈0| m |0〉〈1| =

[
1 0
0 0

]
m
[
0 1
0 0

]
m
[
0 0
1 0

]
= [∨]

Op. Matrix Op. Matrix Op. Matrix Op. Matrix

[m⇔]

[
1 1
1 1

]
[0]

[
0 0
0 0

]
[⇔]

[
1 0
0 1

]
[m]

[
0 1
1 0

]
[∧]

[
1 0
0 0

]
[¬∨]

[
0 0
0 1

]
[⇑]

[
0 1
0 0

]
[⇓]

[
0 0
1 0

]
[⇒]

[
1 0
1 1

]
[⇐]

[
1 1
0 1

]
[∨]

[
1 1
1 0

]
[¬∧]

[
0 1
1 1

]
[R]

[
1 0
1 0

]
[¬R]

[
0 1
0 1

]
[L]

[
1 1
0 0

]
[¬L]

[
0 0
1 1

]

Figure 1: The set of 16 distinct correspondence matrices

To see how to find the corresponding logical expression from a correspon-
dence matrix, consider the CM [⇒] which we use to operatore on vectors |X〉T
on the left side and |Y 〉 on the right;

〈X|[⇒]|Y 〉 = [X,¬X]

[
1 0
1 1

] [
Y
¬Y

]
= [X m ¬X,¬X]

[
Y
¬Y

]
= Y m ¬X¬Y = X ⇒ Y

As was the case in which, for a logical operator variable Θ where V(Θ) is in
the set of logical operators, we will define V[Θ] to be in the set of correspondence
matrices where V valuates [Θ] index-wise. For short, we will call [Θ] a CM in
that, as Θ can be fixed to a particular operator, [Θ] can be fixed to a particular
CM. We will say that [Θ] is commutative if [Θ] = [Θ]T and can see that com-
mutativity in CM’s corresponds to commutativity in their corresponding logical
operator e.g. [⇔], [m], [∧], and [∨] are all commutative. It is important to men-
tion that operating on the logical bra-ket pairs can be done with disjunctions ∨
instead of exclusive disjunctions m in the resulting computation that is; for any
logical expression L we can write L = ∨i,j(ΘijXiYj).

The reasoning for representing the XOR operator as m as opposed to the
more commonly used ⊕ can now be seen as [m], the CM corresponding to m,
is a 90◦ rotation (in either direction) of [⇔] which corresponds to ⇔. Indeed,
we can see that ¬[⇔] = [m] = [⇔]90◦

. Furthermore we can see that the impax
CM [m⇔] is the overlap of both the CM’s [m] and [⇔] both logically as well as
symbolically. The impax operator is tautological in that its operation on any
two expressions give a tautology, likewise [0] is contradictory; that is, 〈X|[m⇔]|Y 〉
= 1 and 〈X|[0]|Y 〉 = 0 respectively.

7

Correspondence matrices are truth tables ‘rolled up’ and as such they are
isomorphic to truth tables of logical operators by construction. Because of this
isomorphism, if two logical expressions consist of the same variables and vari-
able ordering, we can compare these expressions by comparing their respective
CM’s. For example, consider L1 = X ∨ Y and L2 = X ∧ Y , as they both have
the same variables and respective X and Y ordering, we can compare the CM’s
[∨] and [∧] associated with their respective operators ∨ and ∧. In doing so we
can see that [∨] = [∧]⊕ [m] and that X ∨ Y = (X ∧ Y) m (X m Y).

This ability to compare CM’s is useful as we can create a hierarchy of rela-
tions based on feature relationship. For example, above we can see that there is
a relationship between ∨ and ∧ as [∨] contains all the features in [∧]. More gen-
erally we say that any CM in a decomposition is contained in the decomposed
CM if it does not have any features not in that which was decomposed. The
significance of operator containment is that containment gives a quantifiable
constraint on how logical operators can be related to one-another and may limit
the search space for possible decompositions.

3.1 Correspondence Matrix Relationships

One of the benefits of logical CM’s is that, like any matrix, computations can
be performed by rotations and transformations. There are some very interesting
matrix operations which can help in computing logical expressions; to see this
we will denote [Θ]n

◦
as the clockwise rotation of the correspondence matrix [Θ]

where n ∈ {0◦, 90◦, 180◦, 270◦} and the transpose T is the usual swapping of the
row with the column for each matrix element. Furthermore let 〈X|[Θ]z|Y 〉 =
〈X|[Θ]|Y 〉z for any combination of matrix operations z.

We have the five relation rules, each of which can be proved simply by ex-
panding and showing equality:

1. 〈Y |[Θ]|X〉 = 〈X|[Θ]T |Y 〉 = 〈X|[Θ]|Y 〉T

This rule follows from the general property of matrices and demonstrates the
ability to transpose a logical expression solely by transposing the CM. As an
example Y ⇒ X = 〈Y |[⇒]|X〉 = 〈X|[⇐]|Y 〉 = X ⇐ Y .

2. ¬〈X|[Θ]|Y 〉 = 〈X|[¬Θ]|Y 〉 where [¬Θ] = ¬[Θ] see section 3.3

This very powerful result tells us that every CM, hence logical operator, has
a corresponding unique negation. As an example ¬(X ∧ Y) = ¬〈X|[∧]|Y 〉
= 〈X|[¬∧]|Y 〉 = ¬X ∨ ¬Y . We can prove this by noting that ¬〈X|[Θ]|Y 〉
= ¬(XiΘijYj) = Xi¬ΘijYj after applying DeMorgans laws and rewriting the
expression in conjunctive normal form (CNF).

3. 〈X|[Θ]|¬Y 〉 = 〈X|[Θ]T+90◦ |Y 〉 = 〈X|[Θ]|Y 〉T+90◦

where [Θ]T+90◦
= [[Θ]T]90◦

that is, the matrix transpose T is applied first
and then the clockwise rotation of 90◦ is applied. To see an example con-

8

sider the expression X ⇒ ¬Y where Θ =⇒. After applying the computation
[⇒]T+90◦

= [⇐]90◦
= [¬∧] we have that X ⇒ ¬Y = ¬X ∨ ¬Y .

4. 〈¬X|[Θ]|Y 〉 = 〈X|[Θ]T+270◦ |Y 〉 = 〈X|[Θ]|Y 〉T+270◦

which is similar to the transformations in rule 3., the difference being that we
rotate the expression 270◦ clockwise or 90◦ counter-clockwise. Note that the
180◦ difference in rotations between rule 3. and 4. is equivalent to the negation
of both operands as shown in the next rule.

5. 〈¬X|[Θ]|¬Y 〉 = 〈X|[Θ]180◦ |Y 〉 = 〈X|[Θ]|Y 〉180◦

This rule can be derived by applying both rules 1. and 2. in either order as
[[Θ]T+90◦

]T+270◦
= [[Θ]T+270◦

]T+90◦
= [Θ]180◦

. As an example ¬X ∨ ¬Y =
〈¬X|[∨]|¬Y 〉 = 〈X|[¬∧]|Y 〉.

Concerning these transformation rules we can see that there is consistency
over negation and change of variables as, for example, applying rule 4. to
〈¬W |[Θ]|Y 〉 = 〈W |[Θ]|Y 〉T+270◦

, letting W = ¬X and applying rule 4. again
we find that (〈X|[Θ]|Y 〉T+270◦

)T+270◦
= 〈¬W |[Θ]|Y 〉 as we would expect.

3.2 CM Properties

3.2.1 Linearity and Decomposition

One of the most useful attributes of the correspondence matrices is that they
are linear over m. To show this we must show that:

〈X|[Θ1] m [Θ2]|Y 〉 = 〈X|[Θ1]|Y 〉 m 〈X|[Θ2]|Y 〉

We do this by first defining the function ξ : [Θ]→ 〈X|[Θ]|Y 〉 and showing that
ξ is a linear function over m, that is that ξ([Θ1] m [Θ2]) = ξ([Θ1]) m ξ([Θ2]).
As the left side of the expression can be equivalently written as the XOR sum
XiΘ1,ij m Θ2,ijYj , i, j ∈ {1, 2}, ∧ distributes over XOR, and for example Xi =
Xi ∧Xi, we can distribute Xi and Yj term by term and find that:

Xi(Θ1,ij m Θ2,ij)Yj = XiΘ1,ijYj m XiΘ2,ijYj = ξ([Θ1]) m ξ([Θ2])

We then have that logical operators can be expanded in a linear fashion over
XOR.

An important result of linearity over m is that any correspondence matrix
which has more than a single positive entry can be re-written as a XOR decom-
position of basis matrices:

[Θ] = Θ11[∧] m Θ12[⇑] m Θ21[⇓] m Θ22[¬∨]

This gives that any logical expression XΘY can be represented piece-wise:

〈X|[Θ]|Y 〉 = 〈X|[Θ11]|Y 〉 m 〈X|[Θ12]|Y 〉 m 〈X|[Θ21]|Y 〉 m 〈X|[Θ22]|Y 〉 = XiΘijYj

9

which is the result as seen in section 3. As an example, the expression L = X∨Y
can be broken apart to L = 〈X|[∨]|Y 〉 = 〈X|[⇑]|Y 〉 m 〈X|[⇓]|Y 〉 m 〈X|[∧]|Y 〉.
As the bra’s 〈X| and ket’s |Y 〉 are the same in each XOR’ed bra-ket expression
we can find the decomposition (or composition) by looking solely at the corre-
spondence matrices e.g. [∨] = [⇑] m [⇓] m [∧].

We go a step further and find that we can decompose a logical expression
L = XΘY in to a combination of sub-expressions operated on by any logical
operator Φ. That is, for Θ = Θ1ΦΘ2:

XΘY = 〈X|[Θ]|Y 〉 = 〈X|[Θ1]|Y 〉 Φ 〈X|[Θ2]|Y 〉 = (XΘ1Y)Φ(XΘ2Y)

To see this, as every element Θij in a [Θ] can be seen to be a combination of
binary operands Θ1,ij and Θ2,ij operated on by some logical operator Φ i.e.
Θij = Θ1,ijΦΘ2,ij , index-wise we have:

[Θ] =

[
Θ1,11ΦΘ2,11 Θ1,12ΦΘ2,12

Θ1,21ΦΘ2,21 Θ1,22ΦΘ2,22

]
=

[
Θ1,11 Θ1,12

Θ1,21 Θ1,22

]
Φ

[
Θ2,11 Θ2,12

Θ2,21 Θ2,22

]
= [Θ1]Φ[Θ2]

As 〈X|[Θ]|Y 〉 = XiΘijYj and Θij = Θ1,ijΦΘ2,ij , we have 〈X|[[Θ1]Φ[Θ2]]|Y 〉
= Xi(Θ1,ijΦΘ2,ij)Yj . As Θ1,ij and Θ2,ij are themselves logical variables i.e.
V(Θ1,ij) ∈ {0, 1} we have: Θ1,ijΦΘ2,ij = 〈Θ1,ij |[Φ]|Θ2,ij〉 = (Θ1,ij)kΦkl(Θ2,ij)l.
As Φkl is also a binary variable and ∧ is commutative we can can distribute
copies of Xi and Yj over the binary operators giving the full expression L =
(Xi(Θ1,ij)kYj)Φkl(Xi(Θ2,ij)lYj). We can employ rule 2. [3.1] such that, for
example (Xi(Θ1,ij)kYj) = (XiΘ1,ijYj)k and have:

(XiΘ1,ijYj)kΦkl(XiΘ2,ijYj)l = 〈X|[Θ1]|Y 〉 Φ 〈X|[Θ2]|Y 〉

which proves the result that any logical expression dependent on any operator
Θ can be decomposed to some expression with sub-expressions dependent on
operators Θ1 and Θ2 over a fixed operator Φ.

There are usually many possible decompositions for any CM. For example,
consider the expression X m Y in which, for the operator m, we have the two
possible decompositions [m] = [⇔]⇒ [m] and [m] = [⇔]⇒ [⇓]. The ambiguity in
this example arises due to the fact that in propositional logic it is ambiguous as
to whether a valid statement has the precedent being true or false. All one can
say about the validity of a statement is that if it is false (negatively valuated),
that the consequent is false while the precedent is true. There however are
two operators, ⇔ and m by which CM’s can be decomposed uniquely. That is,
letting Φ =m or Φ =⇔, then in the expression [Θ1] Φ [Θ2] = [Θ3] if we know
any two of the 2× 2 CM’s [Θ1],[Θ2], or [Θ3] then the third is unique.

3.2.2 Quotient

Another useful application of correspondence matrices is the ability to quo-
tient one logical expression by another. Let L1 = XΘ1Y and L2 = YΘ2Z be
two logical expressions. We say that L1 \ L2 is L1 being quotiented by L2 and

10

that if L1 and L2 share the same feature (positive entry), then this feature is
quotiented out. This idea of quotienting out features between L1 and L2 is sim-
plified as the setminus operator \ ≡ ∧¬ where ∧¬ is defined to be itself a logical
operator where L1 ∧¬ L2 = L1 ∧¬(L2). Letting L1 = XΘ1Y and L2 = XΘ2Y
we have the relationship;

L1 \ L2 = XΘ1Y \XΘ2Y = 〈X|[Θ1]|Y 〉\〈X|[Θ2]|Y 〉 = 〈X|[Θ1] \ [Θ2]|Y 〉

where

[Θ1] \ [Θ2] =

[
Θ1,11 ∧ ¬Θ2,11 Θ1,12 ∧ ¬Θ2,12

Θ1,21 ∧ ¬Θ2,21 Θ1,22 ∧ ¬Θ2,22

]
= [Θ1] ∧ ¬[Θ2]

This quotient of logical expressions gives a sense of how different one logical
expression is to another. Note that we can also perform this computation using
the modulo operator:

[Θ1] mod [Θ2] =

[
Θ1,11mod Θ2,11 Θ1,12mod Θ2,12

Θ1,21mod Θ2,21 Θ1,22mod Θ2,22

]
where we find that ∧¬ ≡ mod.

We can verify that L1 \ L2 = 〈X|[Θ1] \ [Θ2]|Y 〉 by first noting that L1 =
Θ1,ijXiYj and L2 = Θ2,ijXiYj hence L1 \ L2 = Θ1,ijXiYj ∧ ¬(Θ2,ijXiYj). By
rule 2. [3.1], ¬(Θ2,ijXiYj) = ¬(Θ2,ij)XiYj which gives us the full expression:
Θ1,ijXiYj¬Θ2,ij and gives that: XiΘ1,ij¬Θ2,ijYj = 〈X|[Θ1] ∧ [¬Θ2]|Y 〉. We
then have our result:

〈X|[Θ1]|Y 〉 ∧ 〈X|[¬Θ2]|Y 〉 = 〈X|[Θ1] \ [Θ2]|Y 〉

As an example consider the following quotient of logical expressions X ∨ Y by
X ∧ Y ; (X ∨ Y) \ (X ∧ Y) = X m Y via operations on the bra-ket formulation:

〈X|[∨]|Y 〉\〈X|[∧]|Y 〉 = 〈X|[∨]|Y 〉∧¬〈X|[∧]|Y 〉 = 〈X|[∨] ∧ [¬∧]|Y 〉 = 〈X|[m]|Y 〉

in which we see that [∨] ∧ [¬∧] = [m] and that [∨] and [∧] have a [m] difference
from one another, as seen previously [∨] = [∧] m [m].

Quotienting is important as it shows how CM’s and their corresponding
logical operators are related. Furthermore it gives a way to decompose the
logical operator in to other logical operators.

3.2.3 Composition

We had seen the ability for logical decomposition in 3.2.1; one may ask then,
how we might combine logical expressions? This leads us to one of the biggest
findings in the paper; that if the left and right operands are the same for multiple
logical expressions, then the expressions can be combined solely by combining
their correspondence matrices!

Let X and Y be two logical expressions and Θ1,Θ2,Φ be logical operators,
we find:

11

〈X|[Θ1]|Y 〉 Φ 〈X|[Θ2]|Y 〉 = 〈X|[Θ1]Φ [Θ2]|Y 〉

To derive this, we first transform the left hand side of the expression as
follows:

〈X|[Θ1]|Y 〉 Φ 〈X|[Θ2]|Y 〉 = 〈(XiΘ1,ijYj)|[Φ]|(XkΘ2,klYl)〉
= (XiΘ1,ijYj)mΦmn(XkΘ2,klYl)n

where m,n ∈ {1, 2}. The trick to combining the terms lies in the observation
in which ¬〈X|[Θp]|Y 〉 = 〈X|[¬Θp]|Y 〉, p ∈ {1, 2} by rule 2. [3.1]. We then have
that 〈X|[¬Θp]|Y 〉 = Xi(Θp,ij)2Yj where (Θp,ij)2 = ¬(Θp,ij). Remembering that
Φmn,Θp,ij ∈ {0, 1} for all indices and that ∧ is commutative we have:

(Xi(Θ1,ij)mYj)Φmn(Xk(Θ2,kl)nYl) = XiXk((Θ1,ij)mYjΦmn(Θ2,kl)n)YjYlδikδjl
Xi((Θ1,ij)mΦmn(Θ2,ij)n)Yj

as we can factor out like variables over XOR sums. The resulting expres-
sion can be re-written as Xi〈Θ1,ij |[Φ]|Θ2,ij〉Yj = Xi(Θ1,ijΦΘ2,ij)Yj in which
Θ1,ijΦΘ2,ij = (Θ1ΦΘ2)ij , we then have:

Xi(Θ1ΦΘ2)ijYj = 〈X|[[Θ1ΦΘ2]]|Y 〉 = 〈X|[[Θ1]Φ[Θ2]]|Y 〉

hence the result. This completes the proof and shows that, for logical expressions
consisting of the same two logical variables as their respective left and right hand
operands, combining or decomposing their corresponding logical expressions
becomes a matter of operating solely on the operators!

To see examples of this amazing result consider the logical expression L1 =
(X ⇒ Y) m (X ∨ Y). Writing L in CM form and performing the computation
we find:

L1 = 〈X|[⇒]|Y 〉 m 〈X|[∨]|Y 〉 = 〈X|[[⇒] m [∨]]|Y 〉 = 〈X|[¬L]|Y 〉 = ¬X

If sub-expressions are not in the same form, applying rules in [3.1] will help us
get an expression in the proper form in which the bra-ket operands are the same
in all the sub-expressions. For example, similar to L1 above let L2 = (X ⇒
¬Y) m (X ∨ Y). We use rule 3 to format (X ⇒ ¬Y) and find that 〈X|[Θ]|¬Y 〉
= 〈X|[Θ]|Y 〉T+90◦

which operating on the CM we find [⇒]T+90◦
= [¬∧]; the

logical expression transformation then gives that 〈X|[⇒]|¬Y 〉 = 〈X|[¬∧]|Y 〉.
We can then combine operators from the sub-expressions and find:

〈X|[¬∧]|Y 〉 m 〈X|[∨]|Y 〉 = 〈X|[[⇒] m [∨]]|Y 〉 = 〈X|[⇔]|Y 〉 = X ⇔ Y

For more than two logical variables we can still combine operators, though
not all together. To see this consider the expression L = (L1Φ1L2)Υ(L3Φ2L4)
where L1, · · · ,L4 are logical sub-expressions bound by the operators Φ1,Φ2 and
Υ. We can re-write L in the corresponding CM form and find:

12

L = 〈L1|[Φ1]|L2〉 Υ 〈L3|[Φ2]|L4〉 = Υrs〈L1|[Φ1]|L2〉r〈L3|[Φ2]|L4〉s

Applying rule 2 we find; 〈L1|[Φ1]|L2〉r = 〈L1|[Φ1]r|L2〉 = (Φ1,ij)r(L1)i(L2)j and
〈L3|[Φ2]|L4〉s = (Φ2,ij)s(L3)k(L4)l where we employ that (Φ1)r,ij = (Φ1,ij)r and
that (Φ2)s,kl = (Φ2,kl)s [3.3]. We have the resulting expression:

Υrs(Φ1)r,ij(Φ2)s,kl(L1)i(L3)k(L2)j(L4)l

Next, let L1 = WΘ1X, L2 = YΘ2Z, L3 = WΘ3X, and L4 = YΘ4Z, we can
combine particular sub-expressions and find equivalent expression representa-
tions: (L1)i(L3)k = 〈W |[Θ1]|X〉i〈W |[Θ3]|X〉k = 〈W |[Θ1]i|X〉〈W |[Θ3]k|X〉 =
〈W |[[Θ1]i ∧ [Θ3]k]|X〉 = 〈W |[[Θ1]i[Θ3]k]|X〉. Following the same process for
(L2)j(L4)l and combining, we find the full expression:

〈Φ1,ij |[Υ]|Φ2,kl〉〈W |[[Θ1]i[Θ3]k]|X〉〈Y |[[Θ2]j [Θ4]l]|Z〉

in which [Υ] takes as operands 〈Φ1,ij | and |Φ2,kl〉. One significance is that,
depending on the result of operating by [Υ], one may not need to perform
any further computations. For example, if 〈Φ1,ij |[Υ]|Φ2,kl〉 = 0 then one may
permute to the next set of index values. Another significance of the logical ex-
pression in the above form shows that we are able to operate on logical operators
themselves! We will continue to examine the combining of expressions with 4
or more logical variables in 5.2.

3.3 Compliment Operators

As is seen in figure 1, there are many CM’s corresponding to logical operators
that are not commonly seen in logic. The success of correspondence matrices
lies in that there is a complete set of 16 CM’s which correspond to unique logical
operators, each of which can be negated and corresponds to in a unique oper-
ator. Possibly the most impressive result being that the negation of a logical
expression can be found by negating the operator!

Proving that the negation of a logical expression L = XΘY gives rise
to a unique negated operator; In one direction, starting with ¬〈X|[Θ]|Y 〉 =
(XaΘabYb)2 which, by 3.1 is equivalent to (Xa(Θab)2Yb) = 〈X|[¬Θ]|Y 〉. In the
other direction to prove that ¬Θ is the compliment of Θ; as 〈X|[Θ]2|Y 〉 =
〈X|[m⇔]\ [Θ]|Y 〉 = 〈X|[m⇔]|Y 〉 ∧¬〈X|[Θ]|Y 〉 = (XaΘabYb)2 = 〈X|[Θ]|Y 〉2 by 3.2.2.
This shows that ¬〈X|[Θ]|Y 〉 = 〈X|[¬Θ]|Y 〉.

The negation of any CM [Θ] will be called its compliment CM and will be de-
noted by ¬[Θ] or [¬Θ], the compliment operator to Θ is denoted by ¬Θ or (Θ)2.
One can easily verify that ¬(¬[Θ]) =[Θ]. The compliment operators are shown
in figure 2 as compliment pairs Θ,¬Θ where Θ is compliment to ¬Θ, and ¬Θ is
compliment to ¬(¬Θ) = Θ. As Θij represents the element with the index ij in
[Θ], we will represent the negation of the Θij ’th element by ¬(Θij) or (Θij)2 and
as ¬(Θij) negates each of the elements Θij in the CM [¬Θ] each of the negated

13

Logical and compliment Operators
m⇔, 0 ⇔,m ∧,¬∧ ∨,¬∨
⇒,⇑ ⇐,⇓ R,¬R L,¬L

Figure 2: The set of eight operator and compliment operator pairs

elements are elements of the negated operator; ¬(Θij) = (¬Θij). More precisely
(Θij)2 = (Θ)2,ij as negating each Θij ∈ [Θ] gives us that ¬(Θij) ∈ ¬[Θ] = [¬Θ]
which consists of the elements (¬Θ)ij = (Θ)2,ij .

For a familiar example showing an application of DeMorgans law we find
that ¬(X ∧ Y) = ¬〈X|[∧]|Y 〉 = 〈X|[¬∧]|Y 〉 which is the XOR composition of
X1(¬∧11)Y1 m X1(¬∧12)Y2 m X2(¬∧21)Y1 m X2(¬∧22)Y2. As (¬∧11) = 0 and
(¬∧12) = (¬∧21) = (¬∧22) = 1 we have X¬Y m ¬XY m ¬X¬Y = ¬X ∨ ¬Y .

4 Measurement

Measurement is the process in which an action on a system (that which is
measured) gives a quality (the resulting measurement) about the system. In the
quantum mechanical case it is used to give an amount of an observable such as

spin, velocity, or in the case of Schrödinger’s cat[6], life or death. In the logical
case measurement reveals the truth of a system, an observable being something
such as a valuation of the logical expression being measured.

In [3] we saw the derivation of [Θ], a correspondence matrix representation of
a logical operator Θ and how it acts or operates on the bra-ket logical state vec-
tors as operands. The action of CM’s as well as the logical matrices (LM’s) [4.1]
can be viewed as ‘measurements’. More precisely, a matrix operates or measures
one or more operands and the action of operating on or measuring operands is
called a measurement. For example, the logical expression L = XΘY can be
seen as the measurement of the logical state-vectors 〈X| and |Y 〉 by the CM [Θ]
in the equivalent representation in which L = 〈X|[Θ]|Y 〉.

We will not pursue the quantum computational nature of CM’s and LM’s in
depth, one however should note the similarities between quantum mechanical
type measurements and logical measurements. First in that the valuation of a
logical expression is a measurement, in particular; a measurement of an expres-
sions truth. Before valuating a logical expression L we do not know whether it

is true or false, we might view this as a superposition[7] of possible valuations.

Upon measurement we then have a collapse[8] to one possible valuation. Though
probability densities are not incorporated, the action of a linear CM on a pair of
logical state-vectors gives a XOR decomposition in which the positive valuation
of one component leaves all others negatively valuated. This is a quantization
of truth, that is; upon measurement one can not have any logical expression be

14

both true and false simultaneously. We might then view logical operators acting
on logical expressions as linear measurements which reduce the possibilities of
the computed expression.

4.1 Logical Measurement Matrices (LM’s)

We can generalize the idea of correspondence matrices to the notion of a
‘logical measurement matrix’ or LM in which we find that CM’s are particular
valuations of. LM’s are also important as seen in section 4 as the action (mea-
surement) of a LM on a set of operands gives information about the operands
relationship with one-another.

In short, a correspondence matrix is a positive valuation of a logical matrix
which is itself a measurement operator. Letting [MXΘY] = Θij |Xi〉〈Yj | be a
LM of logical expressions X and Y we can find the unique CM [Θ]:

[Θ] = VT ([MXΘY]) =

[
VT (X)ΘVT (Y) VT (X)ΘVT (¬Y))
VT (¬X)ΘVT (Y) VT (¬X)ΘVT (¬Y)

]
= Θij [MVT (Xi)VT (Yj)]

as VT (XΘY) = VT (X)ΘVT (Y) is applied element-wise to [Θ]. For an example;
letting Θ =⇔ and applying the positive assignments to all X and Y remem-
bering that for example VT (¬X) = ¬VT (X) = 0 we have VT ([MX⇔Y]) = [⇔].

4.1.1 Two Variable LM’s

Looking more in depth we start by deriving LM’s of two variables. Letting
〈Xi| and |Yj〉 be the bra and ket state vectors of the logical expressions Xi and
Yj respectively where i, j ∈ {1, 2} we have that corresponding to the logical
expression L = XiYj we can prepare a unique logical matrix:

[MXiYj
] = (〈Xi|T)(|Yj〉T) = |Xi〉〈Yj |

which we will also refer to as a logical measurement matrix (LM). We say that
[MXiYj

] operates on or measures 〈Xi| and |Yj〉 by treating them as operands of
[MXiYj] and that the measurement is denoted: 〈Xi|[MXiYj]|Yj〉. Applying the
four possibilities for i and j and the corresponding negations i.e. |Y 〉2 = ¬|Y 〉
= |¬Y 〉 we have the four 2 × 2 logical base matrices:

[MX1Y1
] = [MXY], [MX1Y2

] = [MX¬Y], [MX2Y1
] = [M¬XY], [MX2Y2

] = [M¬X¬Y]

where;

[MXY] =|X〉〈Y | =

[
XY X¬Y
¬XY ¬X¬Y

]
, [M¬X¬Y] = |¬X〉〈¬Y | =

[
¬X¬Y ¬XY
X¬Y XY

]
[MX¬Y] = |X〉〈¬Y | =

[
X¬Y XY
¬X¬Y ¬XY

]
, [M¬XY] = |¬X〉〈Y | =

[
¬XY ¬X¬Y
XY X¬Y

]
These four matrices are base matrices as every LM can be written as the

XOR sum of some combination of these matrices and each of these four LM’s
can not be reduced to a XOR sum of a lesser number of matrices. Using the

15

same transformation rules for CM’s [3.1]we can see the relationship between the
above base via translations, rotations, and combinations thereof; for example
[MXY]T+90◦

= [MX¬Y], where the rotation is clockwise.

We can generalize the above base LM’s and include the logical operator, that
is; for L = XΘY we can build a logical measurement matrix [MXΘY] via the
XOR sum of base LM’s:

Θjk[MXjYk
] = Θ11[MX1Y1

] m Θ12[MX1Y2
] m Θ21[MX2Y1

] m Θ22[MX2Y2
] = [MXΘY]

where Θjk is the corresponding element indexed in [Θ]. For example, to find
the LM [MX⇔Y] we first note that for [Θ] = [⇔] that ⇔11 =⇔22 = 1 and
⇔12 =⇔21 = 0 hence we have the XOR sum:

[MX⇔Y] =⇔11[MX1Y1
] m ⇔12[MX1Y2

] m ⇔21[MX2Y1
] m ⇔22[MX2Y2

]

= [MX1Y1
] m [MX2Y2

] = [MXY] m [M¬X¬Y] =

[
X ⇔ Y X m Y
X m Y X ⇔ Y

]
In general we will leave out the terms in which Θij = 0. Extending the above
example, we could use the LM [MX⇔Y] to construct the LM [MX⇒Y]:

[MX⇔Y] m [M¬XY] = [MX⇒Y] =

[
X ⇒ Y ¬X ∨ ¬Y
X ∨ Y X ⇐ Y

]
The generalized LM matrix representation is:

[MXΘY] = Θij |Xi〉〈Yj | =

[
XiΘijYj XiΘij¬Yj
¬XiΘijYj ¬XiΘij¬Yj

]

4.1.2 Single Variable LM’s

In this paper thus far we have seen logical expressions of two and four vari-
ables. It is insightful to see how to build LM’s of single variables and how
multi-variable logical expressions can be built from them as well as the asym-
metries introduced from doing so. Similar to multi-variabled logical expressions,
LM’s can be XOR’ed together so as to remove variables as well as be factored
into conjunctions of LM’s of a single variable, these facts however are built on
the foundation of treating logical expressions as vectors [2.2].

To start, we can see that it is simple to expand logical expressions of a sin-
gle variable by other variables and in doing so create a multi-variable logical
expression:

Y = Y (X1 m ¬X1) = Y (X1 m ¬X1) · · · (Xn m ¬Xn)

We see however that by expanding a logical variable in terms of other variables
we have introduced an asymmetry i.e. Y = (X m ¬X)Y = Y (X m ¬X). That
asymmetry in LM’s makes a difference can be seen simply as [MXY] = |X〉〈Y |
6= |Y 〉〈X| = [MY X]. We can see that the multi-variable expanding of LM’s are
analogous to the logical expansions above:

16

[MXY] m [M¬XY] = (|X〉 m |¬X〉)〈Y | = |T 〉〈Y | = [MYR
] =

[
Y ¬Y
Y ¬Y

]
and

[MY X] m [MY ¬X] = |Y 〉(〈X| m 〈¬X|) = |Y 〉〈T | = [MYL
] =

[
Y Y
¬Y ¬Y

]
where |X〉 m |¬X〉 = |T 〉 =

[
1 1

]T
is the tautalogical statevector as it is true

in both of its indices. We use the above asymmetric matrices to derive the
symmetric LM of a single variable:

[MY] = |Y 〉〈Y | = (|Y 〉〈T |)(|T 〉〈Y |) = [MYL
][MYR

]

It can be proven directly that we can factor two variable expressions in to
their asymmetric factors: [MXY] = ([MXL

][m⇔])[MYR
] = [MXL

][MYR
]. We

generalize this result and find that that for the LM corresponding to the logical
expression XΘY we have:

[MXΘY] = Θij [MXiYj] = Θij [MXiL
][MYjR

] = Θij [MXL
]i[MYR

]j

that [MXiL
] = [MXL

]i can be seen as negation is applied element-wise.

If a LM can be written as a conjunction of multiple LM’s which do not share
a variable then the matrix is said to be seperable and we say that we can separate
the LM into factors. For example [MXL

] and [MYR
] are factors of [MXY]. The

ability to break apart LM’s of conjunctive expressions such as XY into factors
is useful as it shows that we can break apart some multi-variable LM’s in to a
conjunction of LM’s with a single variable.

4.1.3 LM Properties

As might be expected we find that the same computations such as LM trans-
formations, quotienting, and composition can be performed on LM’s in the same
way as was done with CM’s. To show these properties first recall that XiΘijYj
has an equivalent representation as 〈X|[Θ]|Y 〉 [3]. Using this we can apply the
equivalent bra-ket LM representations and find:

[MXΘY] =

[
XiΘijYj XiΘij¬Yj
¬XiΘijYj ¬XiΘij¬Yj

]
=

[
〈X|[Θ]|Y 〉 〈X|[Θ]|¬Y 〉
〈¬X|[Θ]|Y 〉 〈¬X|[Θ]|¬Y 〉

]
We then find, by rule 2. of transforming CM’s i.e. ¬〈X|[Θ]|Y 〉 = 〈X|[¬Θ]|Y 〉,
that:

¬[MXΘY] =

[
〈X|[¬Θ]|Y 〉 〈X|[¬Θ]|¬Y 〉
〈¬X|[¬Θ]|Y 〉 〈¬X|[¬Θ]|¬Y 〉

]
= ¬Θij |Xi〉〈Yj | = [MX(¬Θ)Y]

in which we can see that it doesn’t matter if ¬ is applied to the whole LM or
just to Θ as ¬(Θij [MXiYj

]) = (¬Θij)[MXiYj
].

We can then extend the notion of quotienting to logical matrices. To see this
take the logical operators Θ1 and Θ2 for which we have the respective associated
LM’s [MXΘ1Y] and [MXΘ2Y]. We can quotient the LM’s and we find that:

17

[MXΘ1Y] \ [MXΘ2Y] = [MX(Θ1\Θ2)Y]

This relationship is proven by first remembering that as Θij is a logical vari-
able we have ¬[MXΘY] = ¬Θij [m⇔]∨¬[MXiYj

]. We then find that the quo-
tient [MXΘ1Y] \ [MXΘ2Y] = Θ1,ij [MXiYj

]∧(¬Θ2,ij [m⇔]∨¬[MXiYj
]) which, as

we can distribute over ∧ and ∨ and that operations between LM’s are per-
formed between corresponding LM indices, we have the equivalent expression
(Θ1,ij ∧ ¬Θ2,ij)[MXiYj]. As Θ1,ij ∧ ¬Θ2,ij = (Θ1 \Θ2)ij the result follows.

Similar to the combining of logical expressions by way of combining their
respective CM’s we can combine logical matrices and find that:

[MXΘ1Y]Φ[MXΘ2Y] = [MX(Θ1ΦΘ2)Y]

To see this [MXΘ1Y] Φ [MXΘ2Y] can be written equivalently as:[
〈X|[Θ1]|Y 〉 〈X|[Θ1]|¬Y 〉
〈¬X|[Θ1]|Y 〉 〈¬X|[Θ1]|¬Y 〉

]
Φ

[
〈X|[Θ2]|Y 〉 〈X|[Θ2]|¬Y 〉
〈¬X|[Θ2]|Y 〉 〈¬X|[Θ2]|¬Y 〉

]
We can combine sub-expressions over Φ as operators can be combined i.e.
〈X|[Θ1]|Y 〉 Φ 〈X|[Θ2]|Y 〉 = 〈X|[Θ1]Φ [Θ2]|Y 〉 [3.1]; doing this for all indices
we find:[
〈X|[Θ1]Φ[Θ2]|Y 〉 〈X|[Θ1]Φ[Θ2]|¬Y 〉
〈¬X|[Θ1]Φ[Θ2]|Y 〉 〈¬X|[Θ1]Φ[Θ2]|¬Y 〉

]
= (Θ1ΦΘ2)ij [MXiYj] = [MX(Θ1ΦΘ2)Y]

which shows that we can combine LM’s which share the same ordered sub-
expressions.

4.1.4 Measurement using LM’s

As was the case with correspondence matrices, logical matrices are built
from the ground up to be measurement operators. Like CM’s they measure the
relationship between bra-ket state-vector pairs, however instead of returning an
expression, the LM measures truth.

To see how measurement reveals truth, consider 〈Xi|[MX⇒Y]|Yj〉 where
i, j ∈ {1, 2}:

〈X|[MX⇒Y]|Y 〉 = 1 〈X|[MX⇒Y]|¬Y 〉 = 0
〈¬X|[MX⇒Y]|Y 〉 = 1 〈¬X|[MX⇒Y]|¬Y 〉 = 1

This measurement gives a more general measurement concerning the validity of
a logical statement in which we can see that it is not valid to measure a logical
statevector 〈X| as a premise with a conclusion of |¬Y 〉 no matter the valuation
of X and ¬Y .

Measuring logical state-vectors by a LM shows the logical operator’s rela-
tionship explicitly:

〈Xi|[MXΘY]|Yj〉 = Θij〈Xi|Xk〉〈Yl|Yj〉δikδlj = Θij

18

where k, l ∈ {1, 2} and δab is the Kronecker delta where δab = 1 if a = b and
0 otherwise. We can then see that this type of measurement depends fully on
the operator Θ. As an example, consider the LM [MX⇒Y] = ⇒kl[MXkYl

], we
have:

〈Xi|[MX⇒Y]|Yj〉 = ⇒ij 〈Xi|Xk〉〈Yl|Yj〉δikδlj =⇒ij

by remembering that [MXkYl
] = |Xk〉〈Yl| and that as⇒ij ∈ {0, 1} we can factor

it out.

We do not always have the result of the measurement being dependent solely
on the logical operator, for example 〈X|[MXΘY]|Z〉 = Θij〈X|Xi〉〈Yj |Z〉 =
Θ1j(Yj ⇔ Z). More generally, in measuring the logical expressions L1 and
L2 by the LM [MXΘY] we find that:

L = 〈L1|[MXΘY]|L2〉 = Θrs(L1 ⇔ Xr) ∧ (Ys ⇔ L2)

or equivalently as Θrs〈L1|Xr〉∧〈Ys|L2〉. As, for example, the bra-ket 〈L1|Xr〉
= L1Xr ⇔ ¬L1¬Xr we have that the measured expression L1 is in a sense
‘polarized‘ in respect to Xr that is; L has a positive valuation depending on
both (L1 ⇔ Xr) and (L2 ⇔ Ys) being positively valuated. Measurement by
a LM gives a constraint on how logical sub-expressions can be related so as to
allow the overall expression to be positively valuated.

5 Higher Dimensional Matrices

We can create higher dimensional correspondence matrices in a manner sim-
ilar to that of the 2 × 2 matrices. With the 2 × 2 LM’s there were only 2! = 2
choices to create a logical matrix i.e. for logical expressions X and Y , only
the LM’s [MXY] or [MY X] are possible. Things become more complex in the
higher dimensional case in that for n logical variables there are n! ways to create
the n×n correspondence matrix. This section will derive a way to build higher
dimensional LM’s and their corresponding CM’s.

5.1 4× 4 Matrix Representation

Previously in section 4.1.1 we found the unique logical matrix [MAB] cor-
responding to the logical expression L = A ∧ B. We want embed elements of
[MAB] and the more generalized [MAΘB] in to a larger matrix. To do so we
start by defining a projection map p such that:

p : [MAB] 7→ [[MA]⊗ [MB]]

in which ∀e ∈ [MAB], p(e) ∈ [[MA]⊗ [MB]] where p(e) = e. As both [MA] and
[MB] are diagonal matrices, the map p(e) = e gives elements on the diagonal
in [[MA]⊗ [MB]]:

19

[MAB] =

[
AB A¬B
¬AB ¬A¬B

]
p−→


AB 0 0 0
0 A¬B 0 0
0 0 ¬AB 0
0 0 0 ¬A¬B

 = [[MA]⊗ [MB]]

We can generalize this result to LM’s of the form [MAΦB] = Φtu[MAtBu] where
t, u ∈ {1, 2} and find that for the logical expression AΦB:

Φtu[MAtBu]
p−→ Φtu[[MAt]⊗ [MBu]]

We proceed to build a 4× 4 LM representing a logical expression with four
variables via the use of substitution. To do this consider the logical expression
L = A ∧ B from above and let A = WΘ1X and B = YΘ2Z. As we can write
[MWΘ1X] = Θ1,ij [MWiXj] and [MY Θ2Z] = Θ2,kl[MYkZl

] we have:

[[MA]⊗ [MB]] = [[MWΘ1X]⊗ [MY Θ2Z]] = Θ1,ijΘ2,kl [[MWiXj
] ⊗ [MYkZl

]]

which, as was the case with the two variable LM’s, the operations Θ1,ij and
Θ2,kl, are binary and can be factored out of the tensor product. We then have
that, like [A ∧B], the LM [M(WΘ1X)∧(Y Θ2Z)] can be represented by a 4 × 4
logical matrix. The simplest example of a 4×4 LM is one in which Θ1 = Θ2 = ∧
as this constrains the indices i, j, k, l to be 1. The resulting 4× 4 matrix is:

[[MWX]⊗ [MY Z]] =


WXY Z WXY ¬Z W¬XY Z W¬XY ¬Z
WX¬Y Z WX¬Y ¬Z W¬X¬Y Z W¬X¬Y ¬Z
¬WXY Z ¬WXY ¬Z ¬W¬XY Z ¬W¬XY ¬Z
¬WX¬Y Z ¬WX¬Y ¬Z ¬W¬X¬Y Z ¬W¬X¬Y ¬Z


which is the LM corresponding to the logical expression L = WXY Z.

The 4 × 4 LM just constructed is an example of only one of the 24 = 16
possible base matrices for fixed Θ1 and Θ2. The more general LM corresponding
to the logical expression L = (WΘ1X)Φ(YΘ2Z) is:

[M(WΘ1X)Φ(Y Θ2Z)]
p−→ Φrs[[MWΘ1X]r ⊗ [MY Θ2Z]s]

for the projection p as defined above. However as, for example, [MWΘ1X]r =
(Θ1,ij)r[WiXj] as seen by rule two in 3.1 we have the projection:

[M(WΘ1X)Φ(Y Θ2Z)]
p−→ Φrs(Θ1,ij)r(Θ2,kl)s[[MWiXj]⊗ [MYkZl

]]

where each Φrs,Θ1,ij ,Θ2,kl ∈ {0, 1} and are commutative over conjunctions.
We denote Φ as such to remind us that the sub-expressions WΘ1X and YΘ2Z
are computed first so as to remove ambiguity.

Consider the term Φrs(Θ1,ij)r(Θ2,kl)s in the above expression, this term has
the equivalent representation:

Φrs((Θ1,ij)r(Θ2,kl)s) = 〈(Θ1,ij)|[Φ]|(Θ2,kl)〉

20

This shows that we can measure the relationship between operators! This is sig-
nificant as, for a particular subscript valuation, the action of [Φ] on both 〈Θ1,ij |
and |Θ2,kl〉 tells us whether the LM [[MWiXj

]⊗ [MYkZl
]] needs to be combined

(XOR summed) with the other LM’s in which the subscript permutations are
such that V(〈Θ1,ij |[Φ]|Θ2,kl〉)6= 0. All LM’s have a representation in which they
can be conjoined or modified by some CM element e.g. [MXΘY] = Θij [MXiYj]
where [MXiYj] is modified by Θij . We will call any expression which modifies
a LM a modifier.

5.1.1 Measurement

As ordering is important for any logical expression hence all LM’s, we must
pick a consistent way in which the LM acts upon the left and right hand
operands. To do this we first transform [M(WΘ1X)Φ(Y Θ2Z)] in to an equiva-
lent representation. In pursuing this endeavor note the following:

|W 〉|Y 〉 =

[
W |Y 〉
¬W |Y 〉

]
and 〈Z|〈X| =

[
〈Z|X
〈Z|¬X

]T
in which, as conjunction is commutative:

|W 〉|Y 〉 ⊗ 〈Z|〈X| =

[
WX|Y 〉〈Z| W¬X|Y 〉〈Z|
¬WX|Y 〉〈Z| ¬W¬X|Y 〉〈Z|

]
= |W 〉〈X| ⊗ |Y 〉〈Z|

We find the left hand operand to be (|W 〉|Y 〉)T = 〈Y |〈W | and the right hand
to be (〈Z|〈X|)T = |X〉|Z〉 hence the overall measurement of the left and right
operands by the LM is:

〈Y |〈W |[M(WΘ1X)Φ(Y Θ2Z)]|X〉|Z〉

Finding the correspondence matrices from the logical ones is simply done by
taking the positive valuation of each LM [4.1]. For the 4 × 4 matrix above we
have;

VT [M(WΘ1X)Φ(Y Θ2Z)]
p−→ 〈Θ1,ij |[Φrs]|Θ2,kl〉[VT ([MWiXj

])⊗ VT ([MYkZl
])]

and find that modifyingVT ([MWΘ1X]r⊗ [MY Θ2Z]s) by Φrs∀r, s allows the com-
putation of 4 × 4 CM’s. As an example of a 4 × 4 LM and the corresponding
CM, consider the expression L = (W m X)⇒ (¬Y ∧Z). We first find the LM’s:

[MWmX] =

[
W m X W ⇔ X
W ⇔ X W m X

]
and [MY ⇓Z] =

[
¬Y Z ¬Y ¬Z
Y Z Y ¬Z

]
We can build the 4 × 4 logical matrix by taking the XOR sum relating to the
operator ⇒ operating on [MWmX] and [MY ⇓Z]:

[M(WmX)⇒(Y ⇓Z)] =⇒rs [M(WmX)]r[M(Y ⇓Z)]s
p−→ ⇒rs [[M(WmX)]r ⊗ [M(Y ⇓Z)]s]

= [[MWmX]⊗ [MY ⇓Z]] m [¬[MWmX]⊗ [MY ⇓Z]] m [¬[MWmX]⊗ ¬[MY ⇓Z]]

21

in which the modifiers ⇒11 =⇒21 =⇒22 = 1 and ⇒12 = 0 have been applied
and components with 0-modifiers have been removed. While we can find the
CM from a positively valuated LM [4.1], we do not need to do so as a logical
expression provides enough information.

To see how to construct the CM from the above logical expression we start
by writing it in the equivalent form L = 〈W |[m]|X〉 ⇒ 〈Y |[⇓]|Z〉. As we have
already chosen the order for the variables W,X, Y, Z we only need to compute
the 4× 4 matrix from the action of the modifier ⇒ on [[m]⊗[⇓]]:

⇒rs [[m]r ⊗ [⇓]s] = [[m]1 ⊗ [⇓]1] m [[m]2 ⊗ [⇓]1] m [[m]2 ⊗ [⇓]2] = ¬[[m]1 ⊗ ¬[⇓]2]

where the right side of the equality is an equivalent computation done by noting
that (W m X)⇒ (Y ∧ ¬Z) = ¬((W m Z) ∧ ¬(¬Y ∧ Z)), we find:

⇒rs [[m]r ⊗ [⇓]s] = VT ([M(WmX)⇒(Y ⇓Z)]) =


1 1 0 0
1 1 1 0
0 0 1 1
1 0 1 1


which then measuring the operands 〈Y |〈W | and |X〉|Z〉 gives:

〈Y |〈W |VT [M(WmX)⇒(Y ⇓Z)]|X〉|Z〉 = (W m X)⇒ (¬Y ∧ Z)

this makes sense as the CM VT [M(WmX)⇒(Y ⇓Z)] was constructed to measure
logical state-vectors corresponding to variables W,X, Y, Z in a particular order.
Like combinations of logical expressions with two variables, the true power of
the higher dimensional CM’s become evident when (de)composing logical ex-
pressions. An example of this can be seen in section 5.4.

5.2 Higher Dimensional Matrices

The ability to represent logical expressions as LM’s is not limited to ex-
pressions of 4 or less logical variables. To see this, consider the logical expres-
sion L = ((X1Θ1X2)Φ1(X3Θ2X4))Υ((X5Θ3X6)Φ2(X7Θ4X8)); the correspond-
ing LM is:

Υrs(Φ1,ij)r(Φ2,kl)s(Θ1,ab)i(Θ2,cd)j(Θ3,ef)k(Θ4,gh)l
[[[M(X1)a(X2)b]⊗ [M(X3)c(X4)d]]⊗ [[M(X5)e(X6)f]⊗ [M(X7)g(X8)h]]]

While this expression has a lot of indices, it can be reduced to only eight; the
same as the number of logical variables. To do this we employ the technique
seen in section 3.3 such that for any logical operator Θ we have (Θ)t,uv = (Θuv)t
where t, u, v ∈ {0, 1}. We can rearrange the operators and re-write combina-
tions of operators in bra-ket form, for example as (Φ1,ij)r = (Φ1)r,ij we have
(Θ1,ab)i(Φ1)r,ij(Θ2,cd)j = 〈Θ1,ab|[(Φ1)r]|Θ2,cd〉. After employing rule 2 [3.1]
and finding that, for example, 〈Θ1,ab|[(Φ1)r]|Θ2,cd〉 = 〈Θ1,ab|[Φ1]|Θ2,cd〉r we can
rewrite the above expression as:

〈〈Θ1,ab|[Φ1]|Θ2,cd〉|[Υ]|〈Θ3,ef |[Φ2]|Θ4,gh〉〉

22

[[[M(X1)a(X2)b]⊗ [M(X3)c(X4)d]]⊗ [[M(X5)e(X6)f]⊗ [M(X7)g(X8)h]]]

in which we can see that the modifier for the LM is completely composed of
logical operators. While there are 28 possible 16 × 16 base LM’s which may
be XOR’ed together, we may fully remove any LM which has a modifier whose
valuation is 0 thus reducing the overall computational time.

We build LM’s of larger dimension so as to not have each indexed element

of a smaller dimensional LM be a large logical expression. Using induction[9]

we can build larger LMs and show that any logical expression with 2n logical
sub-expressions (1) can be represented by a square 2n× 2n LM and (2) all non-
conjunctive operators can be pulled in to the LM modifier. First, we have shown
by demonstration that for n = 1 and n = 2 ([4.1.1], and [5.1] respectively) that
there are LM’s satisfying the criteria (1) and (2) as stated. Assuming we can
do this for the logical expression L = L1Θ1L2 which can be represented by the
2n−1×2n−1 LM [ML1Θ1L2

], we want to show that by appending another logical
expression XΘ2Y over the operator Φ we can find a 2n × 2n dimensional LM
for (L1Θ1L2)Φ(XΘ2Y) in which all non-conjunctive operators can be moved
to the modifier. To do this, let (XΘ2Y) be a logical expression with only two
variables X and Y ; we have the associated 2× 2 LM and projection:

[M(L1Θ1L2)Φ(XΘ2Y)]
p−→ Φuv[[M(L1Θ1L2)u]⊗ [M(XΘ2Y)v]]

As [M(L1Θ1L2)] = (Θ1)ij [M(L1)i(L2)j] and [M(XΘ2Y)] = (Θ2)kl[MXkYl
] with

that both (Θ1,ij)u and (Θ2,kl)v are binary values, we can factor them out in to
the modifier proving (2). We have the result:

[M(L1Θ1L2)Φ(XΘ2Y)]
p−→ 〈Θ1,ij |[Φ]|Θ2,kl〉[[M(L1)i(L2)j]⊗ [MXkYl

]]

which as Dim([M(L1)i(L2)j]) = 2n−1×2n−1 and Dim([MXkYl
]) = 2×2 we have

that Dim([[M(L1)i(L2)j]⊗ [MXkYl
]]) = 2n × 2n thus proving (1).

It is not difficult to generalize the above proof to any logical expression of a
finite number variables. To do so simply replace any logical variables which one
would like removed with a 0 and the connecting binary operator with XOR. For
example, to find the logical expression L = L1 from L = L1ΘL2 let Θ =m and
L2 = 0, as L1 m 0 = L1 we have our result. Any finite LM can be constructed
in a similar manner, we find that [ML1ΘL2

] = [ML1m 0] = [ML1
].

It is worth mentioning what 2n × 2n basis matrices look like. For n logical
expressions L1 · · · Ln we find that for L = L1L2 · · · Ln, n ≥ 1:

|L1〉· · · |L2i−1〉 =
⊗2n

i=1|L2i−1〉 and 〈L2i|· · · 〈L2| =
⊗2n

i=1〈L2i|

we have the 2n × 2n basis LM:

[ML1···Ln
]

p−→

(
⊗2n

i=1|L2i−1〉)(
⊗2n

i=1〈L2i|) =
⊗2n

i=1 |L2i−1〉〈L2i| =
⊗2n

i=1[ML(2i−1)L(2i)
]

23

This however is only one of the possible 2n basis matrices as there is a single
possible non-zero modifier. The reason for this is that all operators between
logical expressions are conjunctions.

We can measure these LM base matrices in the same way measurement was
done for 4 × 4 LM’s [5.1.1]. To do this, placing

⊗2n
i=1 inside the bra and ket;

(
⊗2n

i=1|L2i−1〉)T = 〈
⊗2n

i=1 L2i−1| and (
⊗2n

i=1〈L2i|)T = |
⊗2n

i=1 L2i〉:

〈
⊗2n

i=1 L2i−1|
⊗2n

i=1[ML(2i−1)L(2i)
]|
⊗2n

i=1 L2i〉

5.3 Multivariable Computational Comparison

In this paper two different algorithms for computation have been developed.
Both algorithms require the logical expression to be formatted in a particular
fashion such that one can consistently measure the relationship between logi-
cal expressions [4.1.4]. The difference between the two algorithms is that one
method (first method) does not continually build larger and larger measure-
ment matrices while the other (second method) does. Notice that the order of
operator measurement in both the algorithms, this will play an important role
in how computation can be performed.

To see the difference in the computational methods consider logical expres-
sion L with four variables where L is written in the form:

L = ((WΘ1X)Φ1(YΘ2Z))Υ((WΘ3X)Φ2(YΘ4Z))

The first method utilizes the ability for composition of logical expressions based
on their respective CM’s [3.2.3]:

L = 〈Φ1,ij |[Υ]|Φ2,kl〉〈W |[[Θ1]i[Θ3]k]|X〉〈Y |[[Θ2]j [Θ4]l]|Z〉
This method computes by way of many 2 × 2 CM computations and has an
advantage in that it allows the measurement on logical operators on both the
left and right side of Υ which reveals false modifiers i.e. V(〈Φ1,ij |[Υ]|Φ2,kl〉) = 0
thus lessening the number of overall computations.

In the second method for combining logical expressions of four variables, we
combine the expressions 4 × 4 CM’s for each L1 = ((WΘ1X)Φ1(YΘ2Z)) and
L2 = ((WΘ3X)Φ2(YΘ4Z)) over Υ. The LM representation is:

〈〈Θ1,ab|[Φ1]|Θ2,cd〉|[Υ]|〈Θ3,ab|[Φ2]|Θ4,cd〉〉[[MWaXb
]⊗ [MYcZd

]]

To do the computation we make some simplifications; let Γ1 = 〈Θ1,ab|[Φ1]|Θ2,cd〉,
Γ2 = 〈Θ3,ab|[Φ2]|Θ4,cd〉, and let [Γn] = ΓnVT ([[MWaXb

] ⊗ [MYcZd
]]) for n ∈

{1, 2}. We can combine the individual 4× 4 CM matrices [Γ1] and [Γ2] over Υ
by the computation:

[M] = Υuv([Γ1])u([Γ2])v = 〈[Γ1]|[Υ]|[Γ2]〉 = [Γ1]Υ[Γ2]

We can then measure the derived matrix [M] in which we find:

L = 〈Y |〈W |[M]|X〉|Z〉
An example can be seen at the end of section 5.2.

24

5.4 Correspondence Matrix Computations

Here we give examples of how we can bring the tools developed through-
out paper together. Particularly we demonstrate the transformations needed to
combine logical expressions. We will see two examples; the first is how to com-
bine a 2-variable logical expression with a single variable logical expression, the
second shows how to combine a 4-variable with a 3-variable logical expression.

5.4.1 Two variable logical Computation

To combine two logical expressions each with two logical variables or less
the expressions must be of the form L = L1ΦL2 where L1 = (XΘ1Y) and
L2 = (XΘ2Y). As found in section 3.2.3:

L = (XΘ1Y)Φ(XΘ2Y) = X 〈Θ1|[Φ]|Θ2〉Y

where 〈Θ1|[Φ]|Θ2〉 gives the operator (Θ1ΦΘ2) which corresponds to the CM
[[Θ]1Φ[Θ2]].

As an example, consider the expression L = ¬((X ∧ ¬Y)⇔ ¬X) which can
be seen to be two logical expressions (X ∧ ¬Y) and ¬X operated on by ⇔.
To get the expression in the needed form we first write it in bra-ket notation:
¬〈〈X|[∧]|¬Y 〉|[⇔]|〈¬X|[L]|Y 〉〉 which by using the rules [3.1] for matrix com-
putations we have that by rule 3; 〈X|[∧]|¬Y 〉 = 〈X|[⇑]|Y 〉 and that 〈¬X|[L]|Y 〉
becomes 〈X|[¬L]|Y 〉 by application of rule 4. We then have that by rule 2.
¬〈〈X|[⇑]|Y 〉|[⇔]|〈X|[¬L]|Y 〉〉 = 〈〈X|[⇑]|Y 〉|[m]|〈X|[¬L]|Y 〉〉. We can continue
to combine the inner bra-ket expressions:

〈X|[⇑]|Y 〉 m 〈X|[¬L]|Y 〉 = 〈X|[[⇑] m [¬L]]|Y 〉 = 〈X|[¬∧]|Y 〉 = ¬X ∨ ¬Y

which shows that L = ¬((X ∧ ¬Y)⇔ ¬X) = ¬X ∨ ¬Y

5.4.2 Four variable logical Computation

To combine two expressions, each with four our less logical variables, the
expressions must be of the form:

L = L1ΥL2 where L1 = (WΘ1X)Φ1(YΘ2Z) and L2 = (WΘ3X)Φ2(YΘ4Z)

This paper presented two algorithms by which we may compute L [5.3]; we
will perform the computation using the second algorithm and utilize higher
dimensional matrices.

As an example, let L1 = (W m X)⇒ (¬Y ∧Z) from the example in 5.2 and
L2 = ¬((Y ∧ ¬Z)⇔ ¬W), say we want to compute L1 ⇒ L2. We can write L
in the bra-ket form:

L = 〈〈〈W |[m]|X〉|[⇒]|〈¬Y |[∧]|Z〉〉|[⇒]|¬〈〈Y |[∧]|¬Z〉〉|[⇔]|〈¬W |[L]|X〉〉〉

We then format L by applying the transformation rules e.g. 〈Y |[∧]|¬Z〉 =
〈Y |[⇑]|Z〉 so as to be in the format above. We have that:

25

L = 〈〈〈W |[m]|X〉|[⇒]|〈Y |[⇓]|Z〉〉|[⇒]|〈〈Y |[⇑]|Z〉〉|[m]|〈W |[¬L]|X〉〉〉

As L is in the correct form we make the assignments: [Φ1] = [⇒], [Φ2] = [m],
[Θ1] = [m], [Θ2] = [⇓], [Θ3] = [¬L], [Θ4] = [⇑] and [Υ] = [⇒].

We can compute the above by noting that L1 = 〈〈W |[m]|X〉|[⇒]|〈Y |[⇓]|Z〉〉
and L2 = 〈〈Y |[⇑]|Z〉|[m]|〈W |[¬L]|X〉〉 can be represented as unique 4× 4 CM’s
of the form [Γn] = ΓnVT ([[MWiXj

]⊗ [MYkZl
]]) for n ∈ {1, 2}. We then find the

respective CM’s via the method discussed in 5.1.1 by operating directly on the
CM’s of L1 and L2:

[Γ1] = [[m]1 ⊗ [⇓]1] m [[m]2 ⊗ [⇓]1] m [[m]2 ⊗ [⇓]2], [Γ2] = [[⇑]1 ⊗ [¬L]2] m [[⇑]2 ⊗ [¬L]1]

We can compute the measurement matrix [M] as we have that:

[M] = ⇒rs ([Γ1])r([Γ2])s = 〈[Γ1]|[⇒]|[Γ2]〉

which we will compute [M] both ways. The first way gives:

⇒rs ([Γ1])r([Γ2])s =

[[Γ1]1[Γ2]1] m [[Γ1]2[Γ2]1] m [[Γ1]2[Γ2]2] = ¬[[Γ1]1[Γ2]2] = [M]

The second way to compute [M] gives:

〈[Γ1]|[⇒]|[Γ2]〉 = [Γ1]⇒ [Γ2] = [M]

This shows that [M] can be computed by the index-wise application of⇒! The
4× 4 CM’s are:

[Γ1] =


1 1 0 0
1 1 1 0
0 0 1 1
1 0 1 1

 [Γ2] =


0 1 0 1
0 0 0 0
1 0 1 0
1 1 1 1

, [M] =


0 1 1 1
0 0 0 1
1 1 1 0
1 1 1 1


To finish the computation we need to measure [M] by the correct ordering of
variables and find:

〈Y |〈W |[M]|X〉|Z〉 =


YW
¬YW
Y ¬W
¬Y ¬W


T 

0 1 1 1
0 0 0 1
1 1 1 0
1 1 1 1




XZ
X¬Z
¬XZ
¬X¬Z


= (¬WXZ) m ((W ⇒ Y)X¬Z) m ((W ⇒ Y)¬XZ) m ((Y ⇒W)(¬X¬Z)) = L

6 Summary

The foundation of this paper is the introduction of the correspondence ma-
trix (CM); a binary matrix which corresponds uniquely to a particular logical
operator in propositional logic [3]:

26

Op. Matrix Op. Matrix Op. Matrix Op. Matrix

[m⇔]

[
1 1
1 1

]
[0]

[
0 0
0 0

]
[⇔]

[
1 0
0 1

]
[m]

[
0 1
1 0

]
[∧]

[
1 0
0 0

]
[¬∨]

[
0 0
0 1

]
[⇑]

[
0 1
0 0

]
[⇓]

[
0 0
1 0

]
[⇒]

[
1 0
1 1

]
[⇐]

[
1 1
0 1

]
[∨]

[
1 1
1 0

]
[¬∧]

[
0 1
1 1

]
[R]

[
1 0
1 0

]
[¬R]

[
0 1
0 1

]
[L]

[
1 1
0 0

]
[¬L]

[
0 0
1 1

]

By representing logical operators as CM’s we have introduced a mathematical
framework in which we can not only perform computations on and between
logical expressions, but computations on operators themselves! This paper ex-
plored many properties applications of CM’s; It was found that CM’s are linear
[3.2.1] leading to the ability to break apart any logical expression in to the XOR
decomposition of sub-expressions:

XΘY = 〈X|[Θ]|Y 〉 = XiΘijYj

as well as decompose logical expressions by decomposing their unique operator’s
CM representations, furthermore that the decomposition of CM’s allows for the
decomposition of their corresponding logical operators:

[Θ] = Θ11[∧] m Θ12[⇑] m Θ21[⇓] m Θ22[¬∨]

We also found that linearity among CM’s has allowed for the ability to quotient
logical expressions [3.2.2]:

XΘ1Y \XΘ2Y = 〈X|[Θ1] \ [Θ2]|Y 〉 = X(Θ ∧ ¬Θ2)Y

where (Θ ∧ ¬Θ2) is the operator corresponding to the CM [[Θ1] ∧ [¬Θ2]].

We generalized the notion of a CM to that of a logical measurement matrix
(LM) of which CM’s are positive valuations of [4.1]:

[Θ] = VT ([MXΘY]) =

[
VT (X)ΘVT (Y) VT (X)ΘVT (¬Y))
VT (¬X)ΘVT (Y) VT (¬X)ΘVT (¬Y)

]
where a LM is a matrix representation or metric of how logical variables are
related to one another via a particular logical operator. Like any matrix com-
putations can be performed by rotations, transpositions, and negations of LM’s
and their positively valuated CM’s; for example, the foundational rule 2. [3.1]:

¬(XΘY) = ¬〈X|[Θ]|Y 〉 = 〈X|[¬Θ]|Y 〉 = X¬(Θ)Y

shows that by operating on matrices we can transform logical expressions.

A substantial finding is that we can interpret the relationship between two
logical expressions as being the result of a measurement [4]:

〈L1|[MXΘY]|L2〉 = Θrs(L1 ⇔ Xr) ∧ (Ys ⇔ L2)

27

where it was found that measuring two logical expressions by a LM tells whether
the resulting expression is true or false or under what circumstances the result
will be such. If we measure logical expressions via a CM, the resulting ‘polar-
ized’ logical expression is one composed from components shared by both of the
measured expressions and features of the operator.

This paper showed that by negating CM’s of logical operators we create
compliment logical operators [3.3]. Using these complimented or negated oper-
ators we are able to give a proof of one of this papers most significant findings;
that logical expressions can be computed by combining the operators of sub-
expressions:

(XΘ1Y)Φ(XΘ2Y) = 〈X|[Θ1]|Y 〉 Φ 〈X|[Θ2]|Y 〉= 〈X|[[Θ1]Φ[Θ2]]|Y 〉

thus giving that:

(XΘ1Y)Φ(XΘ2Y) = X(Θ1ΦΘ2)Y

where Θ1ΦΘ2 is the operator corresponding to the CM [[Θ1] Φ [Θ2]] [3.2.3]. It
was shown that this result was not restricted to two variable logical expressions
[5.3].

We proved that any logical expression L = (L1Θ1L2)Φ(XΘ2Y) having a
finite number of variables can be projected in to some higher dimensional LM:

[M(L1Θ1L2)Φ(XΘ2Y)]
p−→ 〈Θ1,ij |[Φ]|Θ2,kl〉[[M(L1)i(L2)j]⊗ [MXkYl

]]

Furthermore that all non-conjunctive operations in LM’s which are tensored to-
gether can be pulled out in to a matrix modifier [5.2]. In doing so we have shown
the ability to measure relationships between logical operators, this allowing for
deciding which LM’s need to be computed. Finally we showed how to derive
2n × 2n basis LM’s for any n ∈ N where n ≥ 1,:

[ML1···Ln]
p−→

(
⊗2n

i=1|L2i−1〉)(
⊗2n

i=1〈L2i|) =
⊗2n

i=1 |L2i−1〉〈L2i| =
⊗2n

i=1[ML(2i−1)L(2i)
]

and how to make measurements on these basis LM’s:

〈
⊗2n

i=1 L2i−1|
⊗2n

i=1[ML(2i−1)L(2i)
]|
⊗2n

i=1 L2i〉

7 Thanks

The author would like to thank all those who make knowledge available to
all, free of charge. A special thanks to Wikipedia and Wolfram Alpha. The
author would also like to thank the Great Green Arkleseizure, without which
this work would not be possible.

28

References

[1] Oggier, Frédérique Propositional Logic. http://www1.spms.ntu.edu.sg/

~frederique/dm2.pdf

[2] Wikipedia contributors. Bra–ket notation. Wikipedia, The Free Encyclope-
dia; 2018 Apr 13, 15:58 UTC [cited 2018 Apr 28] https://en.wikipedia.
org/w/index.php?title=Bra%E2%80%93ket_notation&oldid=836248310

[3] Redish, Edward F. Dirac notation. https://www.physics.umd.edu/

courses/Phys374/fall05/files/DiracNotation.pdf

[4] Wikipedia contributors. Outer Product. Wikipedia, The Free Encyclopedia;
2018 May 10, 16:30 UTC [cited 2018 May 20] https://en.wikipedia.org/
w/index.php?title=Outer_product&oldid=840550121

[5] Stover, Christopher and Weisstein, Eric W. Einstein Summation. From
MathWorld–A Wolfram Web Resource. http://mathworld.wolfram.com/
EinsteinSummation.html

[6] Wikipedia contributors. Schrödinger’s cat. Wikipedia, The Free
Encyclopedia; 2018 May 16, 17:27 UTC [cited 2018 May 20].
https://en.wikipedia.org/w/index.php?title=Schr/%C3/%B6dinger/

%27s_cat&oldid=841573463

[7] Looking Glass Universe, 2015. Interference in Quantum Mechanics.
Youtube [Accessed May 13th 2018]. https://www.youtube.com/watch?v=
tt8gVXDsh7Q

[8] Cresser, James. Observables and Measurements in Quantum Mechan-
ics. https://www.physics.umd.edu/courses/Phys374/fall05/files/

DiracNotation.pdf

[9] Overbeek, Roy. Tutorial on Mathematical Induction. http://www.few.vu.
nl/~rbakhshi/teaching/induction.pdf

29

http://www1.spms.ntu.edu.sg/~frederique/dm2.pdf
http://www1.spms.ntu.edu.sg/~frederique/dm2.pdf
https://en.wikipedia.org/w/index.php?title=Bra%E2%80%93ket_notation&oldid=836248310
https://en.wikipedia.org/w/index.php?title=Bra%E2%80%93ket_notation&oldid=836248310
https://www.physics.umd.edu/courses/Phys374/fall05/files/DiracNotation.pdf
https://www.physics.umd.edu/courses/Phys374/fall05/files/DiracNotation.pdf
https://en.wikipedia.org/w/index.php?title=Outer_product&oldid=840550121
https://en.wikipedia.org/w/index.php?title=Outer_product&oldid=840550121
http://mathworld.wolfram.com/EinsteinSummation.html
http://mathworld.wolfram.com/EinsteinSummation.html
https://en.wikipedia.org/w/index.php?title=Schr/%C3/%B6dinger/%27s_cat&oldid=841573463
https://en.wikipedia.org/w/index.php?title=Schr/%C3/%B6dinger/%27s_cat&oldid=841573463
https://www.youtube.com/watch?v=tt8gVXDsh7Q
https://www.youtube.com/watch?v=tt8gVXDsh7Q
https://www.physics.umd.edu/courses/Phys374/fall05/files/DiracNotation.pdf
https://www.physics.umd.edu/courses/Phys374/fall05/files/DiracNotation.pdf
http://www.few.vu.nl/~rbakhshi/teaching/induction.pdf
http://www.few.vu.nl/~rbakhshi/teaching/induction.pdf

	Keywords
	Introduction
	Fundamentals
	Basic Logic
	Valuations

	Bra-Kets and State Vectors

	Correspondence Matrices (CM's)
	Correspondence Matrix Relationships
	CM Properties
	Linearity and Decomposition
	Quotient
	Composition

	Compliment Operators

	Measurement
	Logical Measurement Matrices (LM's)
	Two Variable LM's
	Single Variable LM's
	LM Properties
	Measurement using LM's

	Higher Dimensional Matrices
	4 4 Matrix Representation
	Measurement

	Higher Dimensional Matrices
	Multivariable Computational Comparison
	Correspondence Matrix Computations
	Two variable logical Computation
	Four variable logical Computation

	Summary
	Thanks

